Introducción.
En el presente trabajo vamos a 2. Historia de los materiales y su clasificación Los materiales son las sustancias que componen cualquier cosa o producto .Desde el comienzo de la civilización , los materiales junto con la energía han sido utilizados por el hombre para mejorar su nivel de vida. Como los productos están fabricados a base de materiales , estos se encuentran en cualquier parte alrededor nuestro .Los mas comúnmente encontrados son madera , hormigón , ladrillo , acero , plástico , vidrio , caucho , aluminio , cobre y papel. Existen muchos mas tipos de materiales y uno solo tiene que Los ingenieros especializados en investigación trabajan para crear nuevos materiales o para modificar las propiedades de los ya existentes . Los ingenieros de diseño usan los materiales ya existentes , los modificados o los nuevos para diseñar o crear nuevos productos y sistemas . Algunas veces el problema surge de modo inverso : los ingenieros de diseño tienen dificultades en un diseño y requieren que sea creado un nuevo material por parte de los científicos investigadores e ingenieros. Por conveniencia la mayoria de los materiales de la ingenieria estan divididos en tres grupos principales materiales metálicos , poliméricos , y cerámicos Materiales metálicos . Fases componentes de un sólido desde su estructura intermolecular 4. Enlaces existentes para su configuración. Enlaces metálicos Enlace iónico Enlace covalente En el sistema cúbico hay tres tipos de celdas unidad : cúbica sencilla , cúbica centrada en el cuerpo y cúbica centrada en las caras. En el sistemaortorrómbico están representados los cuatro tipos . En el Estructuras cristalográficas Planos cristalinos Planos en una celda unitaria Notación para planos Importancia del indice de Milller Despejar fracciones y determinar el conjunto mas pequeño de números esteros que estén en la misma razón que las intersecciones. Esos números enteros son los índices de Miller de un plano cristalográfico y se encierran entre paréntesis sin usar comas. La notación (hkl) se usa para indicar índices de Miller en sentido general , donde h ,k, y l son los indices de Miller para un plano de un cristal cúbico de ejes x,y,z respectivamente. La primera clasificación que se puede hacer de materiales en estado sólido, es en función de cómo es la disposición de los átomos o iones que lo forman. Si estos átomos o iones se colocan ordenadamente siguiendo un modeloque se En el caso de los materiales cristalinos, existe un ordenamiento atómico (o iónico) de largo alcance que puede ser estudiado con mayor o menor dificultad. Ahora bien, realmente ¿necesitamos estudiar los materiales a nivel atómico?. Para responder a esta cuestión, podemos estudiar las principales propiedades de dos materiales tan conocidos como son el grafito (Fig.1) y el diamante (Fig.2). El grafito es uno de los materiales más blandos (tiene un índice de dureza entre 1y 2 en la escala Mohs), es opaco (suele tener color negro), es un buen lubricante en estado sólido y conduce bien la electricidad. Por contra, el diamante es el material más Como vemos, son dos materiales cuyas principales propiedades son antagónicas. Pero, si pensamos en sus componentes, nos damos cuenta que tanto uno como el otro están formados únicamente por carbono. Entonces, ¿a que se debe que tengan propiedades tan dispares?. La respuesta está en el diferente modo que tienen los átomos de carbono de enlazarse y ordenarse cuando forman grafito y cuando forman diamante; es decir, el grafito y el diamante tienen distintas estructuras cristalinas. No se conoce con exactitud la fecha en que se descubrió la técnica de fundir mineral de hierro para producir el metal para ser utilizado. Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.c., y se sabe que antes de esa época se empleaban adornos de hierro; los griegos ya conocían hacia el 1.000 a.c, la técnica de cierta complejidad para endurecer armas de hierro mediante tratamiento térmico. Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero. La solubilidad del carbono en el hierro depende de la forma cristalográfica en que se encuentra el hierro. La solubilidad del carbono en el hierro ( cúbica de cuerpo centrado) es menor que el 0,02% y en el hierro (cúbica da caras centradas) es hasta el 2%. 7. Microestructuras De Los Aceros Los constituyentes metálicos que pueden presentarse en los aceros al carbono son: ferrita, cementita, perlita, sorbita, troostita, martensita, bainita, y rara vez austenita, aunque nunca como único constituyente. También pueden estar presentes constituyentes no metálicos como óxidos, silicatos, sulfuros y aluminatos. Diagrama Fe-C Microestructura del acero al carbono, cristales blancos de ferrita Es el carburo de hierro de fórmula Fe3C, contiene 6.67 %C y 93.33 % de hierro, es el microconstituyente más duro y frágil de los aceros al carbono, alcanzando una dureza Brinell de 700 (68 Rc) y cristaliza en la Microestructura del acero 1%C, red blanca de dementita Perlita Microestructura del acero al carbono, cristales oscuros de perlita Austenita Microestructura de la austenita Martensita Microestructura de la martensita Troostita Sorbita La determinación del tamaño de grano austenítico o ferrítico, puede hacerse por la norma ASTM o por comparación de la microfotografías de la probeta a 100X, con las retículas patrón numeradas desde el 1 para el grano más grueso hasta el 8 para el grano más fino. Horno de hogar abierto o crisol Horno De Oxigeno Basico El horno se inclina desde su posición vertical y se carga con chatarra de acero fría (cerca de un 25%) y luego con hierro derretido, después de ser devuelto a su posición vertical, se hace descender hacia la carga una lanza de oxígeno refrigerada por agua y se fuerza sobre ella un flujo de oxígeno puro a alta Horno De Arco Electrico Es el más versátil de todos los hornos para fabricar acero. No solamente puede proporcionar altas temperaturas, hasta 1.930ºC, sino que también puede controlarse eléctricamente con un alto grado de precisión.
programas de investigación y desarrollo , se están creando continuamente nuevos materiales.
La producción de nuevos materiales y el procesado de estos hasta convertirlos en productos acabados , constituyen una parte importante de nuestra economía actual. Los ingenieros diseñan la mayoría de los productos facturados y los procesos necesarios para su fabricación . Puesto que la producción necesita materiales , los ingenieros deben conocer de la estructura interna y propiedad de los materiales , de modo que sean capaces de seleccionar el mas adecuado para cada aplicación y también capaces de desarrollar los mejores métodos de procesado.
La búsqueda de nuevos materiales progresa continuamente . Por ejemplo los ingenieros mecánicos buscan materiales para altas temperaturas , de modo que los motoresde reacción puedan funcionar mas eficientemente . Los ingenieros eléctricos procuran encontrar nuevos materiales para conseguir que los dispositivos
Estos materiales son sustancias inorgánicas que están compuestas de uno o mas elementos metálicos , pudiendo contener también algunos elementos no metálicos , ejemplo de elementos metalicos son hierro cobre , aluminio , niquel y titanio mientras que como elementos no metalicos podriamos mencionar al carbono.
Los materiales de cerámica , como los ladrillos , el vidrio la loza , los ailantes y los abrasivos , tienen escasas conductividad tanto electrica como termica y aunque pueden tener buena resistencia y dureza son deficientes en ductilidad , conformabilidad y resistencia al impacto..
Polimeros , en estos se incluyen el caucho (el hule) , los plásticos y muchos tipos de adhesivos . Se producen creando grandes estructuras moleculares apartir de moléculas orgánicas obtenidas del petroleo o productos agrícolas .
Una sustancia pura como el agua puede existir en las fases sólido, liquido y gas, dependiendo de las condiciones de temperatura y presión. Un ejemplo familiar para todos de dos fases de una sustancia pura en equilibrio es un vaso de agua con cubos de hielo. En este caso el agua, sólida y liquida, da lugar a dos fases distintas separadas por una fase limite, la superficie de los cubos de hielo. Durante la ebullición del agua, el agua líquida y el agua vapor son dos fases en equilibrio. Una representación de las fases acuosas que existen bajo diferentes condiciones de presión y temperatura se muestra en la
En el diagrama de fases presión-temperatura (PT} del agua existe un punto triple a baja presión (4579 torr) y baja temperatura (0,0098 0C) donde las fases sólida, liquida y gaseosa coexisten. Las fases liquida y gaseosa existen a lo largo de la línea de vaporización y las fases líquida y sólida a lo largo de la línea de congelación, como se muestra en la Figura 8.1. Estas lineas son lineas de equilibrio entre dos fases.
El díagrama de fases en equilibrio (PT) se puede construir también para otras sustancias puras. Por ejemplo, el diagrama de fases de equilibrio PT del hierro puro se muestra en la Figura 8.2. Una diferencia fundamental de este diagrama de fases es que tiene tres fases sólidas distintas y separadas: Fe alfa (~, Fe gamma (y) y Fe delta (~).
El hierro ~ y <5 tiene estructuras cristalinas BBC, mientras el hierro y tiene una estructura FCC. Las fases limite en el estado sólido tienen las mismas propiedades que entre liquido y sólido. Por ejemplo, bajo condiciones de equilibrio, el hierro ~ y y puede existir a una temperatura de 910 0C y una atmósfera de presión. Por encima de 910 0C sólo existe la fase y, y por debajo de 910 0C sólo existe la fase ~ Hay también tres puntos triple en el díagrama PT del hierro donde las tres fases diferentes coexisten: (1) líquido, vapor Fe <5; (2) vapor, Fe <5 y Fe y; y (3) vapor, Fe y y Fe ~.enlaces existente para su configuración
En metales en estado sólido , los átomos se encuentran empaquetados relativamente muy juntos en una ordenación sistemática o estructura cristalina . Por ejemplo la disposición de los átomos de cobre en el cobre cristalino consiste que los átomos están tan juntos que sus electrones externos de valencia son atraídos por los núcleos de sus numeroso vecinos . En el caso del cobre sólido cada átomo está rodeado por otros 12 átomos más próximos . Los electrones de valencia no están por lo tanto asociados férreamente a un núcleo en particular y así es posible que se extiendan entre los átomos en forma de una nube electrónica de carga de baja densidad o gas electrónico. Los átomos en un enlace metálico sólido se mantienen juntos por enlace metálico para lograr un estado de más baja energía ( o más estable) . Para el enlace metálico no hay restricciones sobre pares electrónicos como en el enlace covalente o sobre la neutralidad de carga como en el enlace iónico . En el enlace metálico los electrones de valencia más externos de los átomos son compartidos por muchos átomos circundantes y de este modo , en general , el enlace metálico no resulta direccional Fuerzas de van der Waals
Excepto en un gas muy dispersado las moléculas ejercen atracciones y repulsiones entre sí . Estas proceden fundamentalmente de interacciones dipolo-dipolo . Las moléculas no polares se atraen entre sí mediante interacciones débiles dipolo-dipolo llamadas fuerzas de London que surgen como consecuencia de dipolos inducidos en una molécula por otra. En este caso los electrones de una molecula son debilmente atraídos hacia el nucleo de otra pero entonces los electrones de esta son repelidos por los electrones de la primera. El resultado es una distribución desigual de la densidad electrónica y , en consecuencia , un dipolo incluido . Las diferentes interacciones dipolo-dipolo (atractivas y repulsivas) se denominan conjuntamente fuerzas de van der Waals . La distancia entre las moléculas juega un importante papel en la intensidad de dichas fuerzas . Se llama radio de van der Waals a la distancia a la que la fuerza atractiva es máxima .Cuando dos átomos se aproxima a distancias mas cortas que el radiode van der Waals , se desarrollan fuerzas repulsivas entre los núcleos y las capas
Los enlaces iónicos se pueden formar entre elementos muy electropositivos (metálicos) y elementos muy electronegativos (no metales) . En el proceso de ionización los electrones son transferidos desde los átomos de los elementos electropositivos a los átomos de los elementos electronegativos , produciendo cationes cargados positivamente y aniones cargados negativamente . Las fuerzas de enlace son debidas a la fuerza de atracción electrostática o culombiana entre iones con carga opuesta . Los enlaces ionicos se forman entre iones opuestamente cargados por que se produce una disminución neta de la energía potencial para los iones enlazados
Un segundo tipo de enlace atómico primario es el enlace covalente . Mientras el enlace iónico involucra átomos muy electropositivos y electronegativos , el enlace covalente se forma entre átomos con pequeñas diferencias de electronegatividad y ubicados muy próximos en la tabla periódica . En el enlace covalnete los átomos generalmente comparten sus electrones externos s y p como otros átomos , de modo que cada átomo alcanza la configuración de gas noble. En un enlace covalente sencillo cada uno de los átomos contribuye con un electrón a la formación del par de electrones de enlace , y las energías de los dos átomos asociadas con el enlace covalente son menores (mas estables) como consecuencia de la interacción de los electrones . En el enlace covalente , se pueden formar enlaces mútiples de pares de eletrones por un átomo consigo mismo o con otros átomos.
Sistemas cristalográficos
Los cristalógrafos han demostrado que son necesarias solo siete tipos diferentes de celda unidad para crear todas las redes puntuales . La mayor parte de etos siete sistemas cristalinos presentan variaciones de la celda unida básica . A. J. Bravais mostró que catorce celdas unidad estándar podian describir todas las estructuras reticulares posibles .Hay cuatro tipos de celdas unidad :
La mayoría de los metales elementales alrededor del 90 % cristalizan en tres estructuras cristalinas densamente enpaquetadas : cúbica centrada en el cuerpo (BCC) , cúbica centrada en las caras (FCC) y hexagonal compacta (HCP) . La estructura HCP es una modificación más densa de la estructura cristalina hexagonal sencilla . La mayor parte de los metales cristalizadas en esas estructuras densamente enpaquetadas debido a que se libera energía a medida que los átomos se apróximan y se enlazan cada vez más estrechamente entre sí . De este modo , dichas estructuras densamente enpaquetadas se encuentran es disposiciones u ordenamientos de energía cada vez más baja y estable Examinemos ahora detalladamente la disposición de los átomos en las celdas unidad de las tres principales estructuras cristalinas . Aunque solo sea una aproximación consideremos a los átomos de estas estructuras como esferas rígidas. La distancia entre los átomos en las estructuras cristalinas puede ser determinado experimentalmente por análisis de rayos X. Por ejemplo , la distancia interatómica entre dos átomos de aluminio en un fragmento de aluminio puro a 20 0 C es 0.2862 nm.
Se considera que el radio del aluminio en el aluminio metal es la mitad de la distancia interatómica , o 0.143 nm.
Dirección en la celda
A menudo , es necesario referirnos a posiciones específicas en las redes cristalinas . Esto es especialmente importante para metales y aleaciones con propiedades que varían con la orientación cristalográfica . Para cristales cúbicos los indices de las direcciones cristalográficas son los componentes vectoriales de las direcciones resueltos a lo largo de cada eje coordenado y reducido a los enteros mas pequeños .
Para indicar en un diagrama la direcciónen una celda cúbica unitaria dibujamos un vector de
Las superficise cristalinas en celdillas unidad HCP pueden ser identificadas comúnmente utilizando cuatro indices en lugar de tres. Los indices para los planos cristalinos HCP ,llamados indices Miller-Bravais, son designados por las letras h , k , i , l y encerrados entre parentesis ( hkil ) . estos indices hexagonales de 4indices estan basados en un sistema coordenado de 4 ejes .
Existen 3 ejes basicos , a1 , a2 , a3, que forman 1200 entre si. El cuarto eje o eje c es el eje vertical y esta localizado en el centro de la celdilla unidad . La unidad a de medida a lo largo de los ejes a1 a2 a3 es la distancia entre los átomos a lo largo de estos ejes .la unidad de medida a lo largo del eje es la altura de la celdilla unidad . Los recíprocos de las intersecciones que un plano cristalino determina con los ejes , a1 , a2 , a3 proporciona los indices h , k e i mientras el recíproco de la intersección con el eje c da el índice l
Los planos basales de la celdilla unidad HCP son muy importantes para esta celdilla unidad puesto que el plano basal de la celdilla HCP es pralelo a los ejes , a1 , a2 , a3 las intersecciones de este plano con estos ejes serán todas de valor infinito . Así , a1 = ¥ , a2 = ¥ a3 = ¥ El eje c , sin embargo , es unico puesto que el plano basal superior intersecciona con el eje c a una distancia unidad . Tomando los reciprocos de estas intersecciones tenemos los indices de Miller-Bravais para el plano Basal HCP. Así , H =0 K=0 I = 0 y L=1. El plano basal es , por tanto un plano cero-cero-cero-uno o plano (0001) .
A veces es necesario referirnos a planos reticulares específicos de átomos dentro de una estructura cristalina o puede ser interesante conocer la orientación cristalográfica de un plano o grupo de planos en una red cristalina. Para identificar planos cristalinops es estructuras cristalinas cúbicas se usa la notación de Miller . Los indices de Miller de un plano cristalino estan definidos como los reciprocos de las intersecciones , que el plano determina con los ejes x , y , z de los tres lados no paralelos del cubo unitario .Las aristas de una celda cúbica unitaria presentan longitudes unitarias y las intersecciones de los planos de una red se miden en base a estas longitudes unitarias .El procedimiento de determinación de los indices de Miller para un plano de un cristal cúbico es el siguiente:
Ruina
Durómetro Universal Digital: durezas Rockwell, Brinell y Vickers.
Péndulo de Impacto: ensayos según métodos Charpy e Izod, capacidad máxima 300J. Para metales.
Péndulo de Impacto para Plásticos: capacidad máxima aproximada 8J.
Máquina de Fatiga por Flexión Rotativa: capacidad máxima de 270kg*cm.
Las aleaciones producidas por los primeros artesanos del hierro (y, de hecho, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.c.) se clasifican en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico lleno de una
escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y dejar el hierro. El hierro producido en esas condiciones solía contener un 3% de partículas de escoria y un 0,1% de otras impurezas. En ocasiones esta técnica de fabricación producía accidentalmente
auténtico acero en lugar de hierro forjado. Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero.
La producción moderna de arrabio emplea altos hornos que son modelos perfeccionados de los usados antiguamente. El proceso de refinado del arrabio para la producción de acero mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios minihornos que emplean electricidad para producir acero a partir de chatarra.
Las aleaciones de hierro y carbono -aceros y fundiciones- son las aleaciones metálicas más importantes de la civilización actual. Por su volumen, la producción de fundición y de acero supera en más de diez veces la producción de todos los demás metales juntos.
Corrientemente se da el nombre de acero y fundición, a las aleaciones hierro - carbono (si tienen más del 2% de C son fundiciones y si tienen menos del 2% de C son aceros).
El hierro forma soluciones con muchos elementos: con los metales, soluciones por sustitución, con el carbono, nitrógeno e hidrógeno, soluciones por inserción.
Se distinguen tres grupos de aceros al carbono: eutectoides, que contienen cerca de un 0,8% de C, cuya estructura está constituida únicamente por perlita: Hipoeutectoides, que contienen menos del 0,8% de C, con estructura formada por ferrita y perlita; e Hipereutectoides, que contienen del 0,8 al 2% de C y cuya estructura consta de perlita y cementita.
El análisis de las microestructuras de los aceros al carbono recocidos y fundiciones blancas deben realizarse en base al diagrama metaestable Hierro-carburo de hierro o Cementita.
Las microestructuras que presenta el diagrama de equilibrio para los aceros al carbono son:
FERRITA (Hierro a)
Es una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es del orden de 0.008% de carbono, por esto se considera como hierro puro, la máxima solubilidad de carbono en el hierro alfa es de 0,02% a 723 °C.
La ferrita es la fase más blanda y dúctil de los aceros, cristaliza en la red cúbica centrada en el cuerpo, tiene una dureza de 90 Brinell y una resistencia a la tracción de 28 kg/mm2, llegando hasta un alargamiento del 40%. La ferrita se obsera al microscopio como granos poligonales claros.
En los aceos, la ferrita puede aparecer como cristales mezclados con los de perlita, en los aceros de menos de 0.6%C, figura 6; formando una red o malla que limita los granos de perlita, en los aceros de 0.6 a 0.85%C en forma de agujas o bandas circulares orientados en la dirección de los planos cristalográficos de la austenita como en los aceros en bruto de colada o en aceros que han sido sobrecalentados. Este tipo de estructura se denomina Widmanstatten.
La ferrita también aparece como elemento eutectoide de la perlita formando láminas paralelas separadas por otras láminas de cementita, en la estructura globular de los aceros de herramientas aparece formando la matriz que rodea los glóbulos de cementita, figura 9, en los aceros hipoeutectoides templados, puede aparecer mezclada con la martensita cuando el temple no ha sido bien efectuado.
En las probetas atacadas con ácidos se observa de un blanco brillante y aparece como cementita primaria o proeutéctica en los aceros con más de 0.9%C formando una red que envuelve los granos de perlita, formando parte de la perlita como láminas paralelas separadas por otras láminas de ferrita, se presenta en forma de glóbulos o granos dispersos en una matriz de ferrita, cuando los aceros de alto carbono se han sometido a un recocido de globulización, en los aceros hipoeutectoides que no han sido bien templados.
Es el microconstituyente eutectoide formado por capas alternadas de ferrita y cementita, compuesta por el 88 % de ferrita y 12 % de cementita, contiene el 0.8 %C. Tiene una dureza de 250 Brinell, resistencia a la tracción de 80 kg/mm2 y un alargamiento del 15%; el nombre de perlita se debe a las irisaciones que adquiere al iluminarla, parecidas a las perlas. La perlita aparece en general en el enfriamiento lento de la austenita y por la transformación isotérmica de la austenita en el rango de 650 a 723°C.
Si el enfriamiento es rápido (100-200°C/seg.), la estructura es poco definida y se denomina Sorbita, si la perlita laminar se somete a un recocido a temperatura próxima a 723°C, la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, denominándose perlita globular.
Es el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma. La cantidad de carbono disuelto, varía de 0.8 al 2 % C que es la máxima solubilidad a la temperatura de 1130 °C. La austenita no es estable a la temperatura ambiente pero existen algunos aceros al cromo-níquel denominados austeníticos cuya estructura es austenita a temperatura ambiente.
La austenita está formada por cristales cúbicos centrados en las caras, con una dureza de 300 Brinell, una resistencia a la tracción de 100 kg/mm2 y un alargamiento del 30 %, no es magnética.
La austenita no puede atarcarse con nital, se disuelve con agua regia en glicerina apareciendo como granos poligonales frecuentemente maclados, puede aparecer junto con la martensita en los aceros templados.
Es el constituyente de los aceros templados, está conformado por una solución sólida sobresaturada de carbono o carburo de hierro en ferrita y se obtiene por enfriamiento rápido de los aceros desde su estado austenítico a altas temperaturas.
El contenido de carbono suele variar desde muy poco carbono hasta el 1% de carbono, sus propiedades físicas varían con su contenido en carbono hasta un máximo de 0.7 %C.
La martensita tiene una dureza de 50 a 68 Rc, resistencia a la tracción de 170 a 250 kg/mm2 y un alargamiento del 0.5 al 2.5 %, muy frágil y presenta un aspecto acicular formando grupos en zigzag con ángulos de 60 grados.
Los aceros templados suelen quedar demasiado duros y frágiles, inconveniente que se corrige por medio del revenido que consiste en calentar el acero a una temperatura inferior a la crítica inferior (727°C), dependiendo de la dureza que se desee obtener, enfriándolo luego al aire o en cualquier medio.
Es un agregado muy fino de cementita y ferrita, se produce por un enfriamiento de la austenita con una velocidad de enfriamiento ligeramente inferior a la crítica de temple o por transformación isotérmica de la austenita en el rango de temperatura de 500 a 6000C, o por revenido a 4000C.
Sus propiedades físicas son intermedias entre la martensita y la sorbita, tiene una dureza de 400 a 500 Brinell, una resistencia a la tracción de 140 a 175 kg/mm2 y un alargamiento del 5 al 10%. Es un constituyente nodular oscuro con estructura radial apreciable a unos 1000X y aparece generalmente acompañando a la martensita y a la austenita
Es también un agregado fino de cementita y ferrita. Se obtiene por enfriamiento de la austenita con una velocidad de enfriamiento bastante inferior a la crítica de temple o por transformación isotérmica de la austenita en la zona de 600 a 650%, o por revenido a la temperatura de 600%. Su dureza es de 250 a 400 Brinell, su resistencia a la tracción es de 88 a 140 kg/mm2 ,con un alargamiento del 10 al 20%.
Con pocos aumentos aparece en forma muy difusa como manchas, pero con 1000X toma la forma de nódulos blancos muy finos sobre fondo oscuro, figura 16; de hecho tanto la troostita como la sorbita pueden considerarse como perlita de grano muy fino.
Bainita
Es el constituyente que se obtiene en la transformación isotérmica de la austenita cuando la temperatura del baño de enfriamiento es de 250 a 500°C. Se diferencian dos tipos de estructuras: la bainita superior de aspecto arborescente formada a 500-580°C, compuesta por una matriz ferrítica conteniendo carburos. Bainita inferior, formada a 250-4000C tiene un aspecto acicular similar a la martensita y constituida por agujas alargadas de ferrita que contienen delgadas
La bainita tiene una dureza variable de 40 a 60 Rc comprendida entre las correspondientes a la perlita y a la martensita.
Los constituyentes que pueden presentarse en los aceros aleados son los mismos de los aceros al carbono, aunque la austenita puede ser único contituyente y además pueden aparecer otros carburos simples y dobles o complejos.
En el sistema ASTM el grosor del grano austenitico se indica con un número convencional n, de acuerdo con la formula:
logG=(n-1)log2
Donde G es el número de granos por pulgada cuadrada sobre una imagen obtenida a 100 aumentos; este método se aplica a metales que han recristalizado completamente, n es el número de tamaño de grano de uno a ocho.
Forma, tamaño y distribución de los cristales o granos en la microestructura del acero para comparación a 100X
Cualquier proceso de producción de acero a partir del Arrabio consiste en quemar el exceso de carbono y otras impurezas presentes en el hierro.
Una dificultad para la fabricación del acero es su elevado punto de fusión, 1.400ºC aproximadamente, que impide utilizar combustibles y hornos convencionales.
Para superar esta dificultad, se han desarrollado 3 importantes tipos de hornos para el refinamiento del Acero, en cada uno de estos procesos el oxígeno se combina con las impurezas y el carbono en el metal fundido. El oxígeno puede introducirse directamente mediante presión dentro o sobre la carga a través del oxígeno en el aire, o en forma de óxidos de hierro o herrumbre en la chatarra. Esto oxidará algunas impurezas, las que se perderán como gases, mientras otras impurezas reaccionarán con la piedra caliza fundida para formar una escoria que será colada posteriormente.
El horno de hogar abierto semeja un horno enorme, y se le denomina de esta manera porque contiene en el hogar (fondo) una especie de piscina larga y poco profunda (6m de ancho, por 15 m de largo, por 1 m de profundidad, aproximadamente).
El horno se carga en un 30% a un 40% con chatarra y piedra caliza, empleando aire pre-calentado,
Este proceso puede acelerarse introduciendo tubos refrigerados por agua (lanzas), los que suministran un grueso flujo de oxígeno sobre la carga.
Periódicamente, se revisan muestras de la masa fundida en el laboratorio para verificar la composición empleando un instrumento denominado espectrómetro. También se determinan los niveles de carbono.
Si se está fabricando acero de aleación, se agregarán los elementos de aleación deseados. Cuando las lecturas de composición son correctas, el horno se cuela y el acero fundido se vierte en una olla de colada.
El proceso completo demora de cinco a ocho horas, mientras que el Horno de Oxígeno Básico produce la misma cantidad de acero en 45 minutos aproximadamente. Debido a esto, este horno ha sido virtualmente reemplazado por el de Oxígeno Básico.
Es un horno en forma de pera que puede producir una cantidad aproximadamente de 300 toneladas de acero en alrededor de 45 minutos.
Tan pronto como el chorro de oxígeno comienza, se agrega la cal y otros materiales fundentes. La reacción química resultante desarrolla una temperatura aproximada de 1.650º C. El oxígeno se combina con el exceso de carbono acabando como gas y se combina también con las impurezas para quemarlas rápidamente. Su residuo es absorbido por la capa flotante de escoria.
Después de haberse completado la inyección de oxígeno, se analiza el contenido de carbono y la composición química de diversas muestras de la masa fundida.
Cuando la composición es correcta, el horno se inclina para verter el acero fundido en una olla de colada.
Aunque se pueden producir algunos aceros de aleación con este proceso, el ciclo de tiempo aumenta considerablemente, eliminando así su ventaja principal. Consecuentemente, el proceso de oxígeno básico, como el del hogar abierto, se emplea generalmente para producir altos tonelajes de acero con un bajo nivel de carbono, que son los de mayor consumo. Estos aceros con bajo nivel de carbono se utilizan para barras, perfiles y planchas gruesas y delgadas.
Debido a que no se emplea combustible alguno, no se introduce ningún tipo de impurezas. El resultado es un acero más limpio.
Consecuentemente, puede producir todo tipo de aceros, desde aceros con regular contenido de carbono hasta aceros de alta aleación, tales como aceros para herramientas, aceros inoxidables y aceros especiales para los cuales se emplea principalmente. Otras ventaja sobre el Horno de Oxígeno Básico es que puede operar con grandes cargas de chatarra y sin hierro fundido.
El Horno de Arco Eléctrico se carga con chatarra de acero cuidadosamente seleccionada. El arrabio fundido se emplea raramente. Si la carga de chatarra es muy baja en carbono, se agrega coque (el cual es casi puro carbono) o electrodos de carbono de desecho, para aumentar así su nivel.
Al aplicarse la corriente eléctrica, la formación del arco entre los electrodos gigantes produce un